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Abstract. Recently, weakly supervised nuclei segmentation methods
using only points are gaining attention, as they can ease the tedious
labeling process. However, most methods often fail to separate adjacent
nuclei and are particularly sensitive to point annotations that deviate
from the center of nuclei, resulting in lower accuracy. In this study, we
propose a novel weakly supervised method to effectively distinguish adja-
cent nuclei and maintain robustness regardless of point label deviation.
We detect and segment nuclei by combining a binary segmentation mod-
ule, an offset regression module, and a center detection module to deter-
mine foreground pixels, delineate boundaries and identify instances. In
training, we first generate pseudo binary masks using geodesic distance-
based Voronoi diagrams and k-means clustering. Next, segmentation pre-
dictions are used to repeatedly generate pseudo offset maps that indi-
cate the most likely nuclei center. Finally, an Expectation Maximization
(EM) based process iteratively refines initial point labels based on the
offset map predictions to fine-tune our framework. Experimental results
show that our model consistently outperforms state-of-the-art methods
on public datasets regardless of the point annotation accuracy.

Keywords: Weakly Supervised Nuclei Segmentation · Instance
Segmentation · Point Refinement · Offset Map · Geodesic Distance

1 Introduction

Nuclei segmentation in histopathology images is an important task for cancer
diagnosis and immune response prediction [1,13,18]. While several fully super-
vised deep learning approaches to segment nuclei exist [2,6,8,9,19,25], labeling
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thousands of instances are tedious and the ambiguous nature of nuclei bound-
aries requires high-level expert annotators. To address this, weakly-supervised
nuclei segmentation methods [5,10,15,20,23,28] have emerged as an attractive
alternative using cheap and inexact labels e.g., center point annotations. As
point labels alone do not provide sufficient foreground information, it is com-
mon to use Euclidean distance-based Voronoi diagrams and k-means clustering
[7] to generate pseudo segmentation labels for training. However, since Euclidean
distance-based schemes only use distance information while ignoring color, they
often fail to capture nuclei shape information; resulting in inadequate boundary
delineation between adjacent nuclei. Moreover, prior methods [17,21,22] typi-
cally assume that point labels are located precisely at the center of the nuclei.
In real-world scenarios, point annotation locations may shift from nuclei centers
as a result of the expert labeling process, leading to a lower performance after
model training.

To overcome these challenges, we propose a novel weakly supervised instance
segmentation method that effectively distinguishes adjacent nuclei and is robust
to point shifts. The proposed model consists of three modules responsible for
binary segmentation, boundary delineation, and instance separation. To train
the binary segmentation module, we generate pseudo binary segmentation masks
using geodesic distance-based Voronoi labels and cluster labels from point anno-
tations. Geodesic distance provides more precise nuclei shape information than
previous Euclidean distance-based schemes. To train the offset map module, we
generate pseudo offset maps by computing the offset distance between binary
segmentation pixel predictions and the point label. The offset information facil-
itates precise delineation of the boundaries between adjacent nuclei. To make
the model robust to center point shifts, we introduce an Expectation Maximiza-
tion (EM) [4] algorithm-based process to refine point labels. Note that previous
approaches [17,21,22] optimize model parameters only using a fixed set of point
labels, while we instead alternatively update model parameters and the center
point locations. This refinement process ensures that the model maintains high
performance even when the point annotation is not exactly located at the center
of the nuclei.

The contributions of this paper are as follows: (1) We propose an end-to-
end weakly supervised segmentation model that simultaneously predicts binary
mask, offset map, and center map to accurately identify and segment nuclei.
(2) By utilizing geodesic distance, we produce more detailed Voronoi and clus-
ter labels that precisely delineate the boundary between adjacent nuclei. (3) We
introduce an EM algorithm-based refinement process to encourage model robust-
ness on center-shifted point labels. (4) Ablation and evaluation studies on two
public datasets demonstrate our model’s ability to outperform state-of-the-art
techniques not only with ideal labels but also with shifted labels.

2 Methodology

We propose an end-to-end nuclei segmentation method that only uses point
annotations P to predict nuclei instance segmentation masks Ŝ. The proposed
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Fig. 1. Overview of the proposed method. It consists of an encoder and three modules
for binary segmentation, offset map and center map prediction. To train offset map
and center map modules(blue lines), pseudo labels are generated using point label and
predicted binary segmentation mask(green lines). During inference, the instance map,
obtained by predicted offset map and center map, is multiplied with predicted binary
mask to produce instance segmentation prediction(orange lines). (Color figure online)

model consists of three modules: 1) binary segmentation module, 2) offset map
module, and 3) center map module (Fig. 1). For a given input image, we extract
feature maps with an ImageNet-pretrained VGG16 backbone encoder. The fea-
ture maps are further processed through a series of residual units (RUs) and
attention units (AUs) to predict a binary segmentation mask B̂, an offset map
Ô, and a center map Ĉ. The RUs are employed to maintain feature information
so that subsequent modules can reuse the features from early-stage modules. In
contrast, the AUs are used to refine the features of initial modules by using the
predictions of later modules. In particular, the AUs use the point predictions to
refine the features in the offset module, and the offset predictions to refine the
features in the binary module.

In the training stage, we first generate a Voronoi label V and a cluster label K
along the green lines in Fig. 1 to train the segmentation module. Then, we gener-
ate the pseudo offset map O by using B̂ and P . Next, following [29], we generate
the center map C by expanding the point label P with Gaussian kernel within
a radius r. Herein, our model is trained wih a segmentation loss LB(V,K, B̂), an
offset map loss LO(O, Ô), and a center map loss LC(C, Ĉ). Note that P can not
sufficiently enable model robustness to imprecise point annotations. Thus, we
employ an EM algorithm to search the optimal model parameters θ to obtain
more reliable points P ′.
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In the inference stage, B̂, Ô, Ĉ are predicted following the orange lines in
Fig. 1. Then, we generate an instance map I, which shares the same values
among the same instances as follows:

I(x, y) = argmin
i

||(xĈi
, yĈi

) − ((x, y) + Ô(x, y))||2, (1)

where (x, y) represents a coordinate and (xĈi
, yĈi

) means the location of ith

point obtained from Ĉ. Finally, the instance segmentation output Ŝ is obtained
by B̂ × I.

Fig. 2. Visualization of cluster label on CPM17(left) and MoNuSeg(right). (a) Input
image; (b) ground truth; (c) the cluster labels generated by Euclidean distance, and
(d) those by Geodesic distance. The green, red, and black colors are foreground, back-
ground, and ignored, respectively. (Color figure online)

2.1 Loss Functions Using Pseudo Labels

Segmentation Loss. We generate V and K to train the binary segmentation
module. In [21], V was generated based on Euclidean distance between points
without considering color information. As a result, the Voronoi boundaries are
often created across nuclei instances, and the offset map’s quality was limited. To
mitigate this, we instead generate V using Geodesic distance [3,24] by computing
distances di between all center points pi ∈ P and pixels. The boundaries of the
diagram in V are defined as 0, while center points and the other regions are
defined as 1 and 2, respectively.

For k-means clustering, we concatenate the RGB values and the geodesic dis-
tance value di truncated by d∗ to generate the feature vectors fi = (di, ri, gi, bi).
We cluster f into three clusters (0 for background, 1 for foreground, and 2 for
ignore) to generate K (Fig. 2d). To train the binary segmentation module using
V and K, we employ a Voronoi loss LV and a cluster loss LK based on the
cross-entropy:

LV =
1

NΩV

∑

x,y∈ΩV

V(x, y)log(B̂(x, y)) + (1 − V(x, y))log(1 − B̂(x, y)),

LK =
1

NΩK

∑

x,y∈ΩK

K(x, y)log(B̂(x, y)) + (1 − K(x, y))log(1 − B̂(x, y)), (2)

where ΩV and ΩK are the set of foreground and background pixels in V and K,
NΩV and NΩK denote the cardinality of ΩV and ΩK. Following [17], we define
the final segmentation loss as LB = LV + LK.
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Center Map Loss. To achieve instance-level predictions, we introduce a center
map module. The module predicts a keypoint heatmap Ĉ ∈ [0, 1]W×H where
Ĉ = 1 identifies nuclei centers and Ĉ = 0 for other pixels. W and H are the
width and height of the input image. To train the module we employ a focal
loss, commonly used in point detection problems. This loss can focus on a set
of sparse hard examples while preventing easy negatives from dominating the
model [16]:

LC =
−1
NP

∑

x,y

{
(1 − Ĉ(x, y))αlog(Ĉ(x, y)) if C(x, y) = 1

(1 − C(x, y))β(Ĉ(x, y))αlog(1 − Ĉ(x, y)) otherwise,
(3)

where NP denotes the number of point labels. We set the focal loss hyper-
parameters α = 2 and β = 4 following [14,29]. By placing the center map module
at the end of the model, the model is able to retain center point information along
the RUs, so that each module can inherently reflect the information into their
predictions.

Fig. 3. (a) Input image (top) and ground truth (bottom), (b) Instance map (top) and
center map (bottom) generated by the optimal nuclei center points, (c) those by shifted
points (6–8), and (d) those by refined points.

Offset Map Loss. We employ an offset map module that considers the shape of
each nucleus to improve boundary detection. Inspired by [2], we define an offset
vector O(x, y) that indicates the displacement of a point (x, y) to the center of
its corresponding nucleus. To train the offset module, we first compute O(x, y)
of each nucleus segmented by B̂. Then, LO is defined as an L1 loss:

LO =
1

W × H

∑

x,y

|O(x, y) − Ô(x, y)|. (4)
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It is worth noting that in the early stages of training, the pseudo offset map O
generated by B̂ and P is unreliable. Thus, we empirically use LO for back-
propagation after 20 epochs. We optimize the entire model using the loss
L = λBLB + λOLO + λCLC , where λB, λO and λC denote loss weights.

2.2 Refinement via Expectation Maximization Algorithm

Training with nuclei (center) shifted point labels can lead to blurry center map
predictions (see Fig. 3c). This in turn limits model optimization and it’s ability
to distinguish objects, resulting in poor adjacent nuclei segmentation. To address
this, we propose an EM based center point refinement process. Instead of the
standard fixed-point label based model optimization, we alternatively optimize
both model parameters and point labels.

In the E-step, we update the center of each nucleus according to Ô. We use
Ô to generate refined point labels P ′, since Ô is reliable regardless of the point
location i.e., center of the nuclei or shifted.

p′
i = argmin

x,y
|

∑

x̄,ȳ∈vi

B̂(x, y) × Ô(x + x̄, y + ȳ)|, (5)

where vi is ith Voronoi region and p′
i is the refined center point. We repeat

this for all Voronoi regions to obtain P ′, and replace P with P ′ if the distance
between them is < δ. In the M -step of iteration n, we generate C′ by adapting
the Gaussian mask to P ′, and then use it to train offset and center map modules.
As maximizing a probability distribution is the same as minimizing the loss, the
model parameter θ minimizing L is optimized as:

θn := argmin
θ

(L(θn; θn−1,X,V,K,O, C′)). (6)

Since reliable Ô is necessary to refine nuclei centers, refinement starts after 30
epochs. E and M steps are alternately repeated to correct imprecise annotations
bringing them closer to the real nuclei center points.

3 Experiments

Dataset. To validate the effectiveness of our model, we use two public nuclei
segmentation datasets i.e., CPM17 [26] & MoNuSeg [12]. CPM17 contains
64H&E stained images with 7,570 annotated nuclei boundaries sized from
500×500 to 600×600. The set is split into 32/32 images for training and testing.
Images were normalized and cropped to 300×300. MoNuSeg is a multi-organ
nuclei segmentation dataset consisting of 30H&E stained images (1000×1000)
extracted from seven different organs. We used 16 images (4 images from the
breast, liver, kidney, and prostate) as training and 14 images (2 images from each
breast, liver, kidney, prostate, bladder, brain, and stomach) as testing. For a fair
comparison, images were pre-processed before training/testing i.e., normalized
and cropped to 250×250 patches following the setting used in [17].
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To make point labels, we use the center point of full mask annotations. For
a realistic scenario, we generate shifted point label. The shift is performed in
pixels and is randomly selected between the minimum and maximum values.

Implementation Details. For training, all evaluated models were run for 150
epochs with the Adam optimizer [11] using a learning rate of 1e-4, weight decay
of 3e-2, and batch size of 4. The GeodisTK [27] library was used to compute
geodesic distances. For clustering, we set the maximum distance d∗ as 90 and
70 on CPM17 and MoNuSeg, respectively. The Gaussian kernel r was set as
r = 6 and δ was set as 8 for refinement on CPM17. For MoNuSeg, r = 8 and
δ = 8, respectively. A threshold of 0.2 was applied to eliminate the noise and find
important points in Ĉ. Finally, a variety of augmentations were employed i.e.,
random resizing, cropping, and rotations etc., following [17], with loss weights
λB, λO and λC empirically set to 1. We used a NVIDIA RTX A5000 GPU and
PyTorch version 1.7.1.

Table 1. Performance comparison of nuclei segmentation on two public datasets. Shift
indicates the number of pixels point annotations deviate from the nuclei center.

CPM17 MoNuSeg
shift0 shift2-4 shift4-6 shift6-8 shift0 shift2-4 shift4-6 shift6-8
Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI

MIDL [21] 75.0 55.5 75.3 56.9 74.4 53.7 72.2 49.9 70.1 44.9 69.9 45.0 66.3 39.9 61.0 31.5
Mixed Anno [22] 75.3 53.2 75.9 55.5 73.3 52.3 73.1 49.9 73.3 51.6 72.0 49.4 66.0 40.5 66.9 41.8
SPN+IEN [17] 74.3 54.3 72.9 52.1 70.1 47.9 69.4 46.8 74.0 53.4 72.3 50.4 69.1 46.5 65.6 39.4
PROnet 78.7 62.7 78.2 61.8 77.4 60.7 77.0 60.2 75.0 55.5 74.8 54.8 73.3 53.2 72.5 50.9

Main Results. Table 1 shows the performance of our method against state-
of-the-art weakly supervised nuclei segmentation methods [17,21,22] based on
Dice and Aggregated Jaccard Index (AJI) metrics. As opposed to the Dice score,
AJI is key when evaluating adjacent nuclei separation in instance segmentation
tasks. On CPM17, our method outperformed the prior approach by a large mar-
gin of +3.4% in Dice and +7.2% in AJI when the point label is located at the
nuclei center. More importantly, our approach surpassed prior approaches by
a substantial margin when the shift exists. We obtain statistically significant
(p-value <0.05) for the AJI of all comparison methods on two datasets in all
scenarios. Regarding refinement, we observed that our strategy is more bene-
ficial when points exhibit significant shifts i.e., on both CPM and MoNuSeg.
Figure 3 showcases the effectiveness of the refinement process wherein the model
generates precise instance and center maps. With the geodesic distance and the
refinement process, our proposed method achieved state-of-the-art performance.
This demonstrates that our method separates adjacent nuclei accurately, and
maintains its robustness, achieving consistent performance even when the point
annotations are not located at the center of the nuclei. Additionally, in Fig. 4, we
qualitatively show the results to highlight how our method precisely separates
adjacent nuclei.
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Table 2. Evaluation on the effect of offset and center maps.

offset geo refine CPM17 MoNuSeg
shift0 shift2-4 shift4-6 shift6-8 shift0 shift2-4 shift4-6 shift6-8
Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI

x x x 78.0 62.2 77.4 61.2 52.6 38.1 – – 69.6 45.9 68.3 43.8 67.1 40.5 64.0 38.4
x o x 78.5 62.7 78.0 61.8 59.7 43.8 59.5 42.8 73.6 54.2 73.6 54.2 68.0 42.6 64.0 38.5
o x x 77.9 61.8 77.4 60.3 74.0 56.2 67.8 48.7 74.5 55.0 73.4 52.7 71.9 49.3 66.4 39.8
o o x 78.3 62.5 78.0 61.5 75.2 58.0 74.1 55.2 75.0 55.3 74.2 54.4 72.5 52.0 67.5 42.0
o x o 78.1 61.9 78.1 61.7 76.6 58.4 75.0 55.8 74.6 55.4 74.7 54.7 72.6 50.2 70.3 47.4
o o o 78.7 62.7 78.2 61.8 77.4 60.7 77.0 60.2 75.0 55.5 74.8 54.8 73.3 53.2 72.5 50.9

Fig. 4. Nuclei instance segmentation results on CPM17 (top 2 rows) and MoNuSeg
(bottom 2 rows) images. The images and the ground truth (GT) are shown in the left
column. The results using the precise point annotations are shown in i), while those
using shifted (6–8) points are shown in ii). (a) PROnet (ours), (b) SPN+IEN [17], (c)
Mixed Anno [22] and (d) MIDL [21]. The yellow circles indicate the major differences.

Ablation Studies. We conducted ablation studies to assess the impact of
the offset regression module, geodesic distance, and point refinement process
(Table 2). When the binary segmentation module is combined only with the cen-
ter map module without the offset module, the model could separate nuclei only
trained by the ideal label. On the other hand, since there was no refinement pro-
cess due to the absence of the offset map, inaccurate points extracted from the
center map are obtained in the real-world scenario. We also demonstrate that
labels with Geodesic distance help improve overall performance. This is because
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it creates confident labels and more decent divides the boundaries between nuclei.
Finally, using the full set of modules along with a complete instance map, the
model was able to separate adjacent nuclei with precise boundaries, ultimately
reporting higher scores. These findings validate the utility of the center map
and offset map modules i.e., they synergistically facilitate precise instance delin-
eation and nuclei boundary prediction. The geodesic distance and refinement
process also improved the accuracy by contributing to more accurate pseudo
labels. Especially, most variants show a significant drop in performance when
the annotations shift was over 4 pixels. Compared to other variants, our pro-
posed model is more robust to the point shift in both datasets.

4 Conclusion

In this work, we proposed a novel and robust framework for weakly supervised
nuclei segmentation. We demonstrated the effectiveness of geodesic distance-
based Voronoi diagrams and k-means clustering to generate accurate pseudo
binary segmentation labels. This allowed us to generate reliable pseudo offset
maps, and then we iteratively improve the pseudo offset maps that facilitate the
precise separation of adjacent nuclei as well as progressively refine the location
of the center point labels. According to our experimental results, we established
a new state-of-art on two publicly available datasets across different levels of
point annotation imperfections. We believe being able to use low-precision point
annotations while retaining good segmentation performance is an essential step
for automatic nuclei segmentation models to become a widespread tool in real-
world clinical practice.
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